
Chapitre 6: Codes détecteurs et 
correcteurs d’erreurs de 

transmission 



• Un code correcteur est une technique de codage basée sur
la redondance. Elle est destinée à corriger les erreurs de
transmission d'une information (plus souvent appelée
message) sur une voie de communication peu fiable.

• La théorie des codes correcteurs ne se limite pas qu'aux
communications classiques (radio, câble coaxial, fibre
optique, etc.) mais également aux supports pour le
stockage comme les disques compacts, la mémoire RAM et
d'autres applications où l'intégrité des données est
importante.

Introduction
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• La problématique des codes correcteurs d’erreurs est la
suivante :
un expéditeur A envoie un message m à B ; durant la
transmission de ce message, des erreurs se produisent
éventuellement, et B reçoit un message m’ qui comporte
peut-être des erreurs. Il s’agit de trouver comment faire
pour que B:

1- Détecte l’existence d’erreurs,
2- Si les erreurs ne sont pas trop nombreuses, savoir les
corriger.

• Dans certains cas, lorsqu’il est rapide de réexpédier le
message, 1) suffit. Néanmoins, dans d’autres cas, 2) s’avère
indispensable, ex: Transmission satellitaire.

Introduction
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• Dans ce chapitre on essayera de voire l’essentiel sur les
codes détecteurs correcteurs d’erreurs. Différents
catégories de codes existes; on va étudier essentiellement :

1. Principe de la Représentation vectorielle
2. Codes linéaires  
3. Codes de Hamming 

Introduction
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Partie I: Représentation 
vectorielle
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Codes et codages binaires en blocs

• X = {0,1}m    Y = {0,1}n     C = f (x) Í Y est un code
• Mot à coder x = x1 x2 . . . xm x Î X

– « m » est appelé dimension du code
• Mot du code y = y1 y2 … yn y Î Y

− « n » est appelé longueur du code n > m

• On défini la redondance par 

• Et l’efficacité 
de détection

de correction

x yCODEUR 

m
mnR -
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Ed  =  probabilité  d'un  message  détecté  faux
probabilité  d'un  message  faux

 

Ec  =  probabilité  d'un  message  faux  corrigé
probabilité  d'un  message  faux 6



Codes détecteurs et correcteurs d’erreurs

Codes de blocs Codes convolutifs
(continus, récurrents)

linéaires               non linéaires

polynomiaux non polynomiaux

cycliques      non cycliques

Codes et codages binaires en blocs
• Taxonomie des codes détecteurs et correcteurs:
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Codes systématiques
• Définition

x = x1x2 …xm
y = y1 y2…ym ym+1 … yn

" i Î [1..m]   yi = xi :partie utile; ym+1…yn partie redondante
Intérêt :

- En absence d’erreur la partie utile est égale au mot émis. 
- Seule la partie redondante est à calculer.

• Code de parité simple (n=m+1):

• Parité paire 

• Parité impaire

L’addition est module 2. 
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• Propriétés du code de parité simple :

− Redondance

− Détection d’un nombre impair d’erreurs
− Erreurs en nombre pair non détectables
− Aucune correction d’erreur
− Efficacités
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• Inconvénient du code de parité simple :
Pour tracer une erreur il faut calculer S :

Parité paire Parité impaire

SÎ{0,1}

S’il n‘ya pas d’erreurs: S=0 mais la réciproque est fausse
Si S=1 alors il y’a détection d’une erreur.
Le code ne permet de détecté qu’un nombre impaire des
erreurs. Si le nombre d’erreurs est paire S=0 alors qu’il y’a
des erreurs.
La valeur de S est appelé Syndrome.
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• Codes de parités croisées :
Ce sont des code systématiques de longueur de mots
m=p.q avec une redondance de p+q/p.q (n=p.q+p+q).

pour i ≤ p,  j ≤ q
yi,q+1 bit de parité des yi,j
yp+1,j bit de parité des yi,j

La valeur (yp+1,q+1) est inutilisé 
Les parités peuvent être paires ou impaires
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• Propriétés des codes de parités croisées
- La redondance est donnée par :

- La détection d’une erreur implique la possibilité de corrigé
cette erreur mais pas toujours.

- Le cas d’une seul erreur :
Dans ce cas l’erreur est
détectable est corrigeable.
• syndrome =1 X erreur

R = p + q
p ´ q

 = 1
p

 + 1
q

 

X •
•
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- Le cas de deux erreurs :
Dans ce cas l’erreur est détectable mais non corrigeable
(ambiguïté de position).

• syndrome =1 X erreur + autres possibilités

- Le cas de trois erreurs :
Deux syndromes non nulles
donc la détection est possible.
mais avec la possibilité d’une
fausse correction.

X + •
+ X •
• •

X + + •
X + + •

X M •
X X

•
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• Codes à répétition :
Chaque x = x1 x2 … xm est codé en 

y = y11 … y1m y21 … y2m  … yp1 … ypm

x répété p fois
avec yij = xj.

- La redondance est donnée par : R = p-1
- Syndrome : S = 0  si est seulement si  "i,j,k yik = yjk

- Correction possible si p impair: la correction est  
faite par vote majoritaire

• Inconvénient : redondance élevé (en fonction de p)
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Distances et erreurs 
• Représentation géométrique :définitions

Soit y1,y2, …,yn les coordonnées d’un vecteur (ou d’un
point) y dans l’espace {0, 1}n.
On définie un code C(n,m) par l’ensemble de 2m vecteurs
de dimension n dans {0, 1}n.
Soit D la distance euclidienne entre 2 points x et y, on
définie la distance de Hamming d par :

La somme est définie sur N, et le résultat est dans N.
Exemple : x =1010 y =1100 d(x , y)=2

d(x, y) = D2 (x, y) = (yi - xi )
2

i=1

n

å  
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• On définie le poids d’un vecteur x par :

La valeur du poids est entière .
• Théorème :

Avec x + y est un vecteur.
Preuve

Exemple :
x = 1 0 1 0 ; y = 1 1 0 0  ; x + y = 0 1 1 0

d (x, y) = poids (x + y) = 2

poids (x) = xi
i=1

n

å  

d (x, y) = poids (x + y) 

 

d  (x,y)  =  (yi - xi)
2  =  

i=1

n

å (yi - xi)  =  (yi + xi)  =  poids  (x + y)  
i=1

n

å
i=1

n

å
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• Détection des erreurs :

Soit y le vecteur émis et soit y’ le vecteur reçu.
L’erreur entre les deux e = y + y’ donc y’ = y + e et y = y’
+ e. (somme mod 2)
d (y, y’) = poids (e) = nombre de bits « faux ». Chaque bit = 1
dans le vecteur e représente une erreur.

y y‘CANAL
y’

y

e
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L’extrémité du vecteur d’une erreur
de poids e sur le symbole y émis
est située sur la surface de l’hypersphère
de rayon e et de centre y

L’extrémité du vecteur d’une erreur 
de poids p < e sur le symbole y émis 
est située à l’intérieur de l’hypersphère
de rayon e et de centre y

e

y

ey
p
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Une erreur de poids ≤ e sur yi est
détectable s’il n’existe aucun mot du
code yj situé à l’intérieur de l’hypersphère
de rayon e et de centre yi

Une erreur de poids ≤ e sur yi est
corrigeable si yi est le seul mot du code
situé à une distance d ≤ e

Le mot du code émis le plus probable est alors yi

e

yi yj

1

e

y i

y j

>e
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Théorème fondamental

• Définition : Distance d’un code
On appelle distance d’un code C, la valeur d définie par:     
d (C) = Min(d(yi, yj))    " yi, yjÎC ,  yi ≠ yj

• Théorème :
Tout code C de distance d:
– Détecte p = d - 1 erreurs : peut détecter au moins 

toutes les erreurs de poids ≤ p
– Corrige q = int ((d - 1) / 2 ) erreurs : peut corriger au 

moins toutes les erreurs de poids ≤ q
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• Illustration du théorème :

d = 5
4 erreurs détectables
2 erreurs corrigeables

d = 4
3 erreurs détectables
1 erreur corrigeable

d=4

yi yj

2 2

yi yj

d=5

2 2

1
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Construction de codes

• Problématique :
Trouver un code de dimension m et de longueur n
corrigeant toutes les erreurs de poids au plus égal à r ,
revient à placer 2m points (les mots à codés) dans un
espace de 2n points, chaque point étant le centre d’une
hypersphère de rayon r, ces sphères devant être
disjointes.

m, n et r sont donc dépendants
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Partie II: Codes Linéaires et 
codes de Hamming
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Généralisation des codes de 
parité (paire)

• Exemple:
- On construit un code C(7,4):m= 4 et n = 7 (on ajoute 3 bits
de parité paire).
- Soit x = 1101 le message à envoyer. On ajoute un bit sur
x1x2x4, un bit sur x1x3x4 et un bit sur x2x3x4. On obtient
comme code y = 1101 100.
- Soit l’erreur e = 0100 000 avec poids (e) = 1. Le mot reçu
y’ = 1001 100 avec y’ = y+e d(y,y’) =1.
- Les bits de parité sur x1x2x4 et x2x3x4 sont faux. Le bit de
parité sur x1x3x4 est juste.
S’il n’y a qu’une erreur elle ne peut être qu’en x2.
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Propriétés des codes de 
parité (paire)

• yj pour m < j ≤ n est un bit de parité paire pour certains bits
yi pour 1 ≤ i ≤ m Û yj est une combinaison linéaire des yi

• Les bits yi contrôlés par yj sont tels que li = 1, la parité est
selon la relation:
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Espaces vectoriels
• On considère les vecteurs y de codage appartenant à un

espace vectoriel E=<F2,F2
n,.,0> avec F2=<{0,1},+,.,0,1> un

corps et F2
n= <{0,1},+,0> un groupe.

• Une forme linéaire sur E est définie par :

• On dit que {Y1,…Yn} est une base de E ssi:

• {Y1,…Yn} sont linéairement indépendants :
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Vecteurs binaires :propriétés 
• Un vecteur binaire n’est pas orienté

Preuve: y + y = 0 Þy = -y
• Un vecteur binaire peut être orthogonal à lui-même:

y ^ y Û y . y = 0

Exemple: y=1010 : y.y=(1 0 1 0 ) =0

• Théorème :
y ^ y (y est orthogonal à y) Û poids (y) pair
Preuve :
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Matrice génératrice de codage
• Le codage linéaire f : X ® Y peut être représenté par une

matrice dite génératrice:

   Y                            G                                  X        
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Matrice génératrice de codage
• Les lignes de G sont des mots du code C images des

vecteurs x de poids 1 (base canonique de X)
• L’application G doit être injective donc:
Les lignes de G doivent être linéairement indépendantes
alors:

- L’espace vectoriel d’arrivée est un sous-espace  
vectoriel de dimension m.

- Les lignes de G constituent une base de C.
• G est diagonale-gauche car " 1≤ i ≤m :yi = xi (généralement

unitaire-gauche).
A(m,n-m) est appelé
matrice de contrôle.
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Matrice génératrice de codage
• Exemples :

Codes de parité paire

Code à répétitions

            

 
1100
1010
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Systématisation d’un code linéaire
• À tout code linéaire C correspond au moins un code linéaire

systématique équivalent.
Preuve : Algorithmique (soit G la matrice génératrice de C)

Pour i = 1 à m faire
{ si gii=0 // $ m > i, gim = 1
alors Permute(G.i , G.m )          // permuter les colonnes i et m
Pour tout j≠i faire 

{si gji = 1  
alors Gj:=Gj.+Gi.                 // ligne j = somme des lignes j et i

} 
}

Cet algorithme permet de transformé G en matrice de code 
systématique (unitaire-gauche)
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Systématisation d’un code linéaire
• Exemples :

 

1 1 1 0 0 0 0
0 1 0 1 0 1 0
1 0 0 1 1 0 0
1 1 0 1 0 0 1
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Propriétés des codes linéaires
• C linéaire Þ {d(y1,y2): y1,y2ÎC} = {poids (y3) : y3 Î C}

L’ensemble de tout les valeurs des distances entre les yi
coïncide avec l’ensemble des valeurs des poids des vecteurs
yi.

Preuve :
" y1, y2 Î C , $ y3 Î C : d (y1, y2) = poids (y3) 
d (y1, y2) = poids (y1 + y2)  et   y3 =  y1 + y2 Î C 
Þ {d (y1, y2) : y1, y2 Î C} Í {poids (y3) : y3 Î C}
" y3 Î C $ y1, y2 Î C poids (y3) = d (y1, y2)
On pose y1 = y3 y2 = 0 on obtient d(y1,y2)=poids(y3)
Þ {d (y1, y2) : y1, y2 Î C} Ê {poids (y3) : y3 Î C}

C.Q.F.D.
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Propriétés des codes linéaires
• Définition :
Le poids d’un code linéaire C est définie par :

Poids(C)=Min(Poids(x)) " x Î C, x ≠ 0
• Théorème :

C linéaire Þ d(C) = poids (C)
Preuve

{d (y1, y2) : y1, y2 Î C} = {poids (y3) : y3 Î C}
{d (y1, x2) : y1, y2 Î C} –{0} = {poids (x3) : x3 Î C} –{0}
min ({d (x1, x2) : x1, x2 Î C} –{0}) = min ({poids (x3) : x3 Î C} –
{0})

C.Q.F.D.
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Propriétés des codes linéaires
• Borne de Singleton :

C (n,m) linéaire Þ d (C) ≤ n - m + 1
Preuve

Soit C’ le code systématique équivalent à C de matrice G’.
Les lignes de G’ : G’i. sont des mots du code (base).
On sait que d (C) = d (C’) = poids (C’) ≤ max (poids (G’i.))
Puisque G’ est diagonale gauche Þ au moins m-1 zéros dans 
G’i. Þ max (poids (G’i.)) = n - (m - 1) = n - m + 1
Donc d (C) ≤ n - m+ 1.

C.Q.F.D.
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Théorème fondamental

• C linéaire Þ une erreur de vecteur e est détectable si et
seulement si e Ï C

Preuve

y émis Î C y’ reçu    y’ = y + e
Le théorème est de type A si et seulement si B, pour le 
prouver, on démontre (1) ¬B Þ ¬A  et   (2) ¬A Þ ¬B

(1) e Î C Þ y’ = y + e Î C  Þ e non détectable
(2) e non détectable Þ y’ Î C Þ e = y + y’  Î C 

38



Matrice de vérification
• Pour chaque matrice génératrice G d’un code C(n,m), il

existe une matrice H(n-m,n) (matrice de vérification ou de
contrôle) qui vérifie :

G • Ht =0 et H • Gt=0
• C’est-à-dire que :

• Cette matrice est construite en se basent sur les dépendances
linéaires entre les vecteurs colonnes de la matrice G. (les
vecteurs colonnes de G sont linéairement dépendants, alors
que les n-m vecteurs sont linéairement indépendants).
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Calcul des Syndromes 

• Soit x le mot à envoyer et y le mot de code correspondant.
• y’ est le mot reçu avec y’=y+e (e :l’erreur de transmission)
Le syndrome de y’: S(y’)est définie par H • y’t (S est linéaire).

H • Gt=0Þ"x : H • Gt • tx =0
Þ"x : H • t(x • G)=0
Þ"y H • ty = 0

Donc S(y)=0 et S(y’)=S(e) car S(y’)=S(y+e)=S(y)+S(e)=S(e)
e=0 Þ S(y’)=S(e)=0 (pas d’erreurs)
La réciproque est fausse (erreurs non détectés)
La matrice H est utilisé pour vérifié la transmission

x y y'CODEUR CANAL
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Matrice H d’un code Systématique

• Pour un code systématique équivalent C, la matrice G est de
la forme :

• Donc la matrice de contrôle H est de la forme

1                 m              n
1

m

I AG =

1                 m              n
1

n-m
H = ItA
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Vérification d’un code systématique
• On prouve que cette forme de H vérifie bien G •tH=0 :

• Preuve
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Exemples de vérification de code 
linéaires 

• Code de parité paire:

• Code à répétition

            

 
1100
1010
1001

        

4  3

3214332211 xxxyxyxyxy

G

nm

++====

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=

==

0
 )1  1  1  1(

4321 =+++
=

yyyy
H

( )
14321

1111
4  1

xyyyy
G

nm

====
=

==

0
0
0

1001
0101
0011

41

31

21

=+
=+
=+

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=

yy
yy
yy

H

43



Construction des codes de Hamming
• Hypothèsepoids (e) = 1;  e = (0 …1…0) avec 1 en 
position j  ;           y’ = y + e S (y’) = S (e) = H • te

Le syndrome d’une erreur dans la position j est égale à la 
jième colonne de la matrice H.

1
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1     j                     n 1
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Construction des codes de Hamming

• Le syndrome d’une erreur de poids 1 dont le jième bit= 1 est
égal à la colonne j de la matrice H :S(e) = H.j

• Pour corriger une erreur, la matrice H doit avoir toutes ses
colonnes non nulles et distinctes.

• La position de l’erreur est alors la position du syndrome
dans une et une seule des colonnes de H.

• Un code ayant cette propriété est appelé
Code De Hamming

• La distance d’un tel code est égale à 3.
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Construction des codes de Hamming
• Exemple :

n=7 et m=4 : code C(7,4)

 

 H  =  
0 1 1 1
1 1 0 1
1 0 1 1
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 Y  =  X  +  E  =  1 0 1 1 1 1 0( ) 

 

 s(Y )  =  
1
1
1

æ 

è 

ç 
ç ç 

ö 

ø 

÷ 
÷ ÷ 

 

Þ

( ) 0110101               GXY =•=Þ

Þ

Þ Þ
L’erreur est 
dans le 
4ième bit
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Codes optimaux de Hamming
• Colonnes de H (n-m,n) non nulles et distinctesÛ n ≤ 2n-m- 1
Û 2n-m ≥ n + 1 Û n - m ≥ log2 (n + 1)

• Un code de Hamming est optimal si sa redondance R =(n-
m)/m et minimale c’est-à-dire n-m= (log2 (n + 1)) donc R=
(log2 (n + 1))/m.

• Théorème : Les codes optimaux de Hamming sont des codes
parfaits.
Preuve :
n-m= log2(n + 1)Þ (n + 1).2m = 2n Þ le code est parfait

1

n-m

1     n
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Vérification du second théorème
de Shannon

• Codes de Hamming optimaux
n n-k k R
3 2 1 2
7 3 4 3/4
15 4 11 4/11
31 5 26 5/26
… … … …
µ 0
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Conclusion

• Dans ce chapitre, on à vu seulement quelque illustrations
simples des codes correcteurs et détecteurs d’erreurs, qui
reposent essentiellement sur l’algèbre des corps.

• Plusieurs autres codes existent qui sont actuellement
utilisé en pratique avec une grande efficacité:

• Codes polynomiaux,
• Les codes cycliques de longueur impaire, BCH (Bose, Ray-

Chaudhuri, Hocquenghem),
• Les codes cycliques non-linéaires : Code de ReedSolomon
• Les codes de Reed-Muller,
• Les turbos codes ...
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