Chapitre 6: Codes détecteurs et
correcteurs d’erreurs de
transmission



Introduction

* Un code correcteur est une technique de codage basée sur
la redondance. Elle est destinée a corriger les erreurs de
transmission d'une information (plus souvent appelée
message) sur une voie de communication peu fiable.

* La théorie des codes correcteurs ne se limite pas qu'aux
communications classiques (radio, cable coaxial, fibre
optique, etc.) mais également aux supports pour le
stockage comme les disques compacts, la mémoire RAM et
d'autres applications ou l'intégrité des données est
importante.



Introduction

* La problématique des codes correcteurs d’erreurs est la
suivante :

un expéditeur A envoie un message m a B ; durant la
transmission de ce message, des erreurs se produisent
éventuellement, et B recoit un message m’ qui comporte
peut-étre des erreurs. Il s’agit de trouver comment faire
pour que B:

1- Détecte 'existence d’erreurs,

2- Si les erreurs ne sont pas trop nombreuses, savoir les
corriger.

* Dans certains cas, lorsqu’il est rapide de réexpédier le
message, 1) suffit. Néanmoins, dans d’autres cas, 2) s’avere
indispensable, ex: Transmission satellitaire.



Introduction

* Dans ce chapitre on essayera de voire 'essentiel sur les
codes détecteurs correcteurs d’erreurs. Différents
catégories de codes existes; on va étudier essentiellement :

1. Principe de la Représentation vectorielle
2. Codes linéaires
3. Codes de Hamming



Partie I: Représentation
vectorielle



Codes et codages binaires en blocs

X — CODEUR [ —"* Y

X={0,1}" Y={0,1}]" C=f(x)cY estuncode
Mot a coder X=X{ Xy ... Xy x € X

— «m » est appelé dimension du code
Motducode y=y;y,...y, yeY

- «n » est appelé longueur du code n > m

n—m

On défini la redondance par R = ”

Et I'efficacité

de détection E. = probabilité d'un message détecté faux
. =

probabilité d'un message faux

de correction I probabilité d'un message faux corrigé
‘ probabilité d'un message faux




Codes et codages binaires en blocs

e Taxonomie des codes détecteurs et correcteurs:

Codes détecteurs et correcteurs d’erreurs

|
| |

Codes de blocs Codes convolutifs
I | l (continus, récurrents)
linéaires non linéaires
|
oo I
polynomiaux non polynomiaux

|
1 l

cycliques non cycliques




Codes systématiques
* Définition
X = X1Xy ... Xy

Y3avYiy¥V2.--YmlYm+1 -+ ¥n

Viell.m] y;=x; partie utile; y, ...y, partie redondante

Intérét :
- En absence d’erreur la partie utile est égale au mot émis.

- Seule la partie redondante est a calculer.
* Code de parité simple (n=m+1):
* Parité paire  ¥u=2¥ =2y, =0

» Parité impaire ¥, =D y+l = Dy =1
i=1 i=1

L’addition est module 2. .



Codes systématiques
* Propriétés du code de parité simple :

1
- Redondance R=—

m

- Détection d"un nombre impair d’erreurs
- Erreurs en nombre pair non détectables
- Aucune correction d’erreur

- Efficacités

2 p=p) " Cy
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Codes systématiques

* Inconvénient du code de parité simple :
Pour tracer une erreur il faut calculer S :
Parité paire Parité impaire

szz":yi S:Zn:yi+1 Se{0,1}
=1 i=1

S’il n"ya pas d’erreurs: S=0 mais la réciproque est fausse
Si S=1 alors il y’a détection d'une erreur.

Le code ne permet de détecté qu'un nombre impaire des
erreurs. Si le nombre d’erreurs est paire S=0 alors qu’il y’a
des erreurs.

La valeur de S est appelé Syndrome.
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Codes systématiques

* Codes de parités croisées :
Ce sont des code systématiques de longueur de mots

m=p.q avec une redondance de p+q/p.q (n=p.q+p+q).

(yll """ qu\ /yl,qﬂ\
Y=| - e ‘e ...

\y;ﬂ ...... ypq/ \yp,qH/

(yp+1,l T yp+l,q )(@ )

pouri<p, j<q
Yiq+1 bit de parité des y;;
Yp+1, bit de parité des y;;

La valeur (ypﬂlqﬂ) est inutilisé

Les parités peuvent étre paires ou impaires -



Codes systématiques

Propriétés des codes de parités croisées
La redondance est donnée par :

La détection d’une erreur implique la possibilité de corrigé
cette erreur mais pas toujours.

Le cas d’une seul erreur:

Dans ce cas l'erreur est

détectable est corrigeable. X o

* syndrome =1 X erreur o



Codes systématiques
- Le cas de deux erreurs :

Dans ce cas l'erreur est détectable mais non corrigeable
(ambiguité de position).
* syndrome =1 X erreur + autres possibilités

X + o X + 4| e
+ X o X + 4| e

- Le cas de trois erreurs :

Deux syndromes non nulles X & .
donc la détection est possible.

. q Ties 1 X X
mais avec la possibilité d'une

fausse correction.
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Codes systématiques

* Codes a répétition :
Chaque x = x1 X, ... X, est codé en

Y=Y11---Y1m Y21---Y2m "Ypl"'Ypm
X répété p fois

avec yj = Xi.
- Laredondance est donnée par : R = p-1
- Syndrome :S =0 siest seulement si Vijk yy =y
- Correction possible si p impair: la correction est
faite par vote majoritaire
* Inconvénient : redondance élevé (en fonction de p)
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Distances et erreurs

Représentation géométrique :définitions

Soit y,¥», ...,Yyn les coordonnées d'un vecteur (ou d’'un
point) y dans l'espace {0, 1}".

On définie un code C(n,m) par 1'’ensemble de 2™ vecteurs
de dimension n dans {0, 1}".

Soit D la distance euclidienne entre 2 points x et y, on
définie la distance de Hamming d par :

d(x,y)=D*(x.5)=2 (3, = %)’

La somme est définie sur N, et le résultat est dans N.
Exemple: x=1010 y =1100 d(x, y)=2
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Distances et erreurs

* On définie le poids d"un vecteur x par :

poids (x) = in
i=1

La valeur du poids est entiere .
* Théoreme :

d(x,y)= poids (x+y) ‘
Avec x *+y est un vecteur.
Preuve

d (x,y) = Z(yi_xi)z = Z(yi_xi) = Z(yi+xi) = poids (x+y)

Exemple :
x=1010;y=1100,;,x+y=0110

d (x, y) =poids (x +y) =2
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Distances et erreurs

e Détection des erreurs :

|
y

Soit y le vecteur émis et soit y’ le vecteur recu.
L’erreur entre lesdeux e=y +y donc yy=y+e ety =y
+ e. (somme mod 2)

d (y, y') = poids (e) = nombre de bits « faux ». Chaque bit =1
dans le vecteur e représente une erreur.
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Distances et erreurs

L’extrémité du vecteur d’une erreur

de poids e sur le symbole y émis

est située sur la surface de ['hypersphere
de rayon e et de centre y

L’extrémité du vecteur d’une erreur
de poids p < e sur le symbole y émis
est située a l'intérieur de I"hypersphere
de rayon e et de centre y
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Distances et erreurs

Une erreur de poids < e sur y; est

détectable s’il n’existe aucun mot du

yi code y; situé a l'intérieur de I'hypersphere
de rayon e et de centre y;

o Y

4

Une erreur de poids < e sur y; est

' corrigeable si y; est le seul mot du code
situé a une distanced <e

Le mot du code émis le plus probable est alors y;
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Théoreme fondamental

* Définition : Distance d"un code
On appelle distance d"un code C, la valeur d définie par:

d (C) =Min(d(y; y5)) Vi ¥i€eC, yi#y;

e Théoréeme :
Tout code C de distance d:

— Détecte p=d-1erreurs :peutdétecter au moins
toutes les erreurs de poids < p

— Corrige q=int((d-1) / 2) erreurs : peut corriger au
moins toutes les erreurs de poids < q
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Théoreme fondamental

e Jllustration du théoréme :
d=5

d=5
4 erreurs détectables
2 erreurs corrigeables

1

d=4

3 erreurs détectables
v ‘ 1 erreur corrigeable
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Construction de codes

* Problématique:

Trouver un code de dimension m et de longueur n
corrigeant toutes les erreurs de poids au plus égal a r ,
revient a placer 2™ points (les mots a codés) dans un
espace de 2" points, chaque point étant le centre d'une
hypersphere de rayon r, ces spheres devant étre
disjointes.

m, n et r sont donc dépendants
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Partie II: Codes Linéaires et
codes de Hamming



Généralisation des codes de
parité (paire)

* Exemple:

- On construit un code C(7,4)m= 4 et n = 7 (on ajoute 3 bits
de parité paire).

- Soit x = 1101 le message a envoyer. On ajoute un bit sur
X1XoX,, UNn bit sur x;xs3x; et un bit sur x,x;x, On obtient
comme code y = 1101 100.

- Soit I'erreur e = 0100 000 avec poids (e) = 1. Le mot recu
y’ =1001 100 avec y’ = y+e d(y,y’) =1.

- Les bits de parité sur x;x;x4 et X5x3x4 sont faux. Le bit de
parité sur x;x3x, est juste.

S'il n’y a qu'une erreur elle ne peut étre qu’en x..
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Propriétés des codes de
parité (paire)

* yjpour m <j <n est un bit de parité paire pour certains bits
yipour 1<i<m < yj;estune combinaison linéaire des y;

Y :Z;ti'yi y A € {091}

i=1

* Les bits y; controlés par y; sont tels que A; = 1, la parité est
selon la relation:

Vi "‘iﬁi% =0
i=1



Espaces vectoriels

On considere les vecteurs y de codage appartenant a un
espace vectoriel E=<F,F,".,0> avec F,=<{0,1},+,.,0,1> un
corps et F,"= <{0,1},+,0> un groupe.

Une forme linéaire sur E est définie par :

DAY, el v ey
i=l1

On dit que {Y;,...Y,} est une base de E ssi:

n
VyeY, 3. A, y= D A,
i=l1

{Y1,...Y,} sont linéairement indépendants :

Zn:ii.Yl- =0=>Vi, 4 =0

i=1



Vecteurs binaires :propriétés

* Un vecteur binaire n’est pas orienté
Preuve: y+y=0=y=-y
* Un vecteur binaire peut étre orthogonal a lui-méme:
yly ©y.y=0 |
Exemple: y=1010 :y.y=(1010) |9 =0
1

* Théoréme: 0
y Ly (y est orthogonal a y) < poids (y) pair

Preuve :

Y.y = Z(yi.yi) = Zyi = 0 = Lenombrede 1est paire
i=1 i=l1

—> Poid(y) est paire



Matrice génératrice de codage

* Le codage linéaire f : X — Y peut étre représenté par une
matrice dite génératrice:

1 .. . . ..on
|
(X, eeeeee, X, ) @ g, =(Yyeeerer V)
M\ Qi e e o S )
X ° G - Y

i=1



Matrice génératrice de codage

* Les lignes de G sont des mots du code C images des
vecteurs x de poids 1 (base canonique de X)

« L’application G doit étre injective donc:

Les lignes de G doivent étre linéairement indépendantes

alors:

- L’espace vectoriel d’arrivée est un sous-espace

vectoriel de dimension m.

- Les lignes de G constituent une base de C.

* G est diagonale-gauche car V 1< i <m :y; = x; (généralement

unitaire-gauche).

1

m

n

A(mmn-m) est appelé
matrice de controle.



Matrice génératrice de codage

* Exemples :

Codes de parité paire

Code a répétitions
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Systématisation d’un code linéaire

* A tout code linéaire C correspond au moins un code linéaire
systématique équivalent.

Preuve : Algorithmique (soit G la matrice génératrice de C)

Pouri=1 a m faire

{ si gii=0 //57/” > i/ 8im = 1
alors Permute(G;, G,,) // vermuter les colonnes i et m
Pour tout j#i faire
{sig;=1
}alors G;:=G +G; // ligne j = somme des lignes j et 1
J

Cet algorithme permet de transformé G en matrice de code
systématique (unitaire-gauche)
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Systématisation d'un code linéaire

~ {1

* Exemples:




Propriétés des codes linéaires
* Clinéaire = {d(y4,y2): y1,¥2 €C} = {poids (y3) : y3 € C}

L’ensemble de tout les valeurs des distances entre les y;
coincide avec I'ensemble des valeurs des poids des vecteurs
Yi-
Preuve :
Vy,y2€C,3y; € C:d(yy, y) = poids (y3)
d (y1, y2) = poids (y1+ys) et y3= y1+ys€ C

= {d (y1, ¥2) : y1, y2 € C} c {poids (y3) : y5 € C}

Vys € C 3y, y, € Cpoids (ys) =d (y1, y»)

On pose y; =y3 y, =0 on obtient d(y;,y,)=poids(ys)

= {d (y1, ¥2) : Y1, y2 € C} 2 {poids (y3) : y; € C}
C.Q.E.D.



Propriétés des codes linéaires
* Définition :
Le poids d'un code linéaire C est définie par :
Poids(C)=Min(Poids(x)) Vx € C, x#0
* Théoreme:
C linéaire = d(C) = poids (C)
Preuve

{d (1, y2) 1 y1, y2 € C} = {poids (y3) : y5 € C}
{d (Y1, x2) 1 y1, y2 € C} ={0} = {poids (x3) : X3 € C} {0}
min ({d (xq, Xp) : X1, X5 € C} -{0}) = min ({poids (x3) : x3 € C} -
{0})
C.Q.F.D.



Propriétés des codes linéaires

* Borne de Singleton :
C (n,m) linéaire = d (C)<n-m+1
Preuve
Soit C’ le code systématique équivalent a C de matrice GG'.
Les lignes de G" : G’; sont des mots du code (base).
On sait que d (C) =d (C') = poids (C) < max (poids (G';))
Puisque G’ est diagonale gauche = au moins m-1 zéros dans
G’; @ max (poids (G';)) =n-(m-1)=n-m+1
Doncd (C) <n-m+1.
C.Q.E.D.



Théoreme fondamental

e C linéaire = une erreur de vecteur e est détectable si et
seulementsie ¢ C

Preuve

yémise C y'recu y =y+e
Le théoreme est de type A si et seulement si B, pour le
prouver, on démontre (1) =B = —A et (2) -A = —B
(1)ee C =y =y+eeC = enondétectable
(2) enon détectable >y e C=e=y+y eC
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Matrice de vérification

* Pour chaque matrice génératrice G d'un code C(nm), il
existe une matrice H(n-m,n) (matrice de vérification ou de
controle) qui vérifie :

GeH!'=0 et He G'=0

* (C’est-a-dire que :

Vi,jl<i<metl<j<n-m Y G,.H, =0
k=1

* Cette matrice est construite en se basent sur les dépendances
linéaires entre les vecteurs colonnes de la matrice G. (les
vecteurs colonnes de G sont linéairement dépendants, alors
que les n-m vecteurs sont linéairement indépendants).



Calcul des Syndromes

X CODEUR [— y % V'

+ Soit x le mot a envoyer et y le mot de code correspondant.

* vy estlemotrecuavec y'=y+e (e :I'erreur de transmission)
Le syndrome de y’: S(y”)est définie par H e y'* (S est linéaire).
H e G'=0=Vx: HeGletx =0
=Vx: Hel(x e G)=0
=>Vy Helty=0
Donc S(y)=0 et S(y")=S(e) car S(y")=S(y+e)=S(y)+S(e)=S(e)
e=0 = S(y')=S(e)=0 (pas d’erreurs)
La réciproque est fausse (erreurs non détectés)

La matrice H est utilisé pour vérifié la transmission "



Matrice H d’un code Systématique

* Pour un code systématique équivalent C, la matrice G est de

la forme : 1 m "
1/ N

G = | A

\_ _/

 Donc la matrice de contrdle H est de la forme

1 m N
1 a N

H= tA |
n-mk )




Vérification d'un code systématique

* On prouve que cette forme de H vérifie bien G ¢'H=0:

1

G e H =

m

e Preuve

1 i m j
| A
\_ _J

N

roa

__________________________________ A 1
=

\_ _/

Vi,j(Ge' H)ij = ZGik°tij
k=1

_ Z[ik,Akj +ZAik.[,g. =A;,+A4,=0
k=1 k=m




Exemples de vérification de code

linéaires

* Code de parité paire:
m=3 n=4

|

o0 H=(01111)
G=/0 1 0 1

00 1 1 W+ +y,=0

V=X Vo =X, V3 =X V=X TX,TX

* Code a répétition

1 1 0 0)
m=1n=4 H=1 0 1 0
G=(01 11 1) 10 0 1)
N=V = V3=V =% y,+3,=0
n+y,=0

yi+y,=0




Construction des codes de Hamming

* Hypothesepoids (e) =1; e=(0...1...0) avec 1 en

positionj ; y=y+te S(y)=S(e)=H-e'e
1 j 4 1 O e N

1 ™ : L
il

| ) o : = O =Hj

n-m _/ n-m- -
n - O J

H e te = H

Le syndrome d’une erreur dans la position j est égale a la
jieme colonne de la matrice H.



Construction des codes de Hamming

Le syndrome d’une erreur de poids 1 dont le j**™e bit= 1 est

égal a la colonne j de la matrice H :S(e) = H;

Pour corriger une erreur, la matrice H doit avoir toutes ses
colonnes non nulles et distinctes.

La position de l'erreur est alors la position du syndrome
dans une et une seule des colonnes de H.

Un code ayant cette propriété est appelé
Code De Hamming
La distance d’un tel code est égale a 3.
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Construction des codes de Hamming

* Exemple:
n=7 et m=4: code C(7,4)
(1 0 0 0|0 1 1
O 1 1 1;{1 0 O
GOlO Lo H 1 1 0 1{0 1 O
= : =
O 01 0|1 O 1 {01100 1
0O 0 O 1|1 1 1)

X=01 010 —= Y=XeG=(1 010 1 1 0

E=0 0010 0 0)

U 1 L’erreur est
Y=X+E=(01011110)]|= s(Y)[l] — dansle
1 4ieme kit
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Codes optimaux de Hamming

* Colonnes de H (n-m,n) non nulles et distinctes< n < 2™™- 1
o2M>n+lon-m2log, (n+1)
1 n

W

* Un code de Hamming est optimal si sa redondance R =(n-
m)/m et minimale c’est-a-dire n-m= (log, (n + 1)) donc R=
(log, (n +1))/m.

* Théoreme : Les codes optimaux de Hamming sont des codes
parfaits.

Preuve :
n-m= log,(n + 1)= (n + 1).2™ = 2" = le code est parfait
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Vérification du second théoreme
de Shannon

* Codes de Hamming optimaux
n n-k k R
3 2 1 2

/ 3 4 3/4
15 4 11 4/11
31 5 26 5/26



Conclusion

Dans ce chapitre, on a vu seulement quelque illustrations
simples des codes correcteurs et détecteurs d’erreurs, qui
reposent essentiellement sur I’algebre des corps.

Plusieurs autres codes existent qui sont actuellement
utilisé en pratique avec une grande efficacité:

Codes polynomiaux,

Les codes cycliques de longueur impaire, BCH (Bose, Ray-
Chaudhuri, Hocquenghem),

Les codes cycliques non-linéaires : Code de ReedSolomon

Les codes de Reed-Muller,
Les turbos codes ...
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